Class XI Session 2024-25 Subject - Mathematics Sample Question Paper - 4

Time Allowed: 3 hours

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Section A

1. $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = ?$

4.

5.

6.

a) $\frac{1}{16}$ b) $\frac{1}{8}$ c) $\frac{\sqrt{3}}{8}$ d) $\frac{\sqrt{3}}{16}$

2. If R is a relation from a non – empty set A to a non – empty set B, then

- a) $R \subseteq A \times B$ b) $R = A \cap B$
- c) $R = A \cup B$ d) $R = A \times B$
- 3. If two squares are chosen at random on a chess board, the probability that they have a side common is [1]
 - a) $\frac{2}{7}$ b) $\frac{1}{18}$ c) $\frac{1}{9}$ lim $x \sin \frac{1}{x}$ is equals to a) 1 b) does not exist c) 1/2d) 0 The equations of the lines through (-1, -1) and making angles of 45° with the line x + y = 0 are [1]
 - a) x 1 = 0, y 1 = 0c) x - 1 = 0, y - x = 0Given the sets A = {1, 2, 3}, B = {3, 4}, C = {4, 5, 6}, then A \cup (B \cap C) is [1]

CLICK HERE

>>

a) {1, 2, 3} b) {3}

Page 1 of 14

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

Maximum Marks: 80

[1]

[1]

	c) {1, 2, 3, 4, 5, 6}	d) {1, 2, 3, 4}	
7.	The multiplicative inverse of $(3 + 2i)^2$ is		[1]
	a) $\left(rac{-4}{169} + rac{12}{169} i ight)$	b) $\left(rac{5}{169} - rac{12}{169} i ight)$	
	C) $\left(\frac{-5}{169} + \frac{12}{169}i\right)$	d) $\left(\frac{5}{169} + \frac{12}{169}i\right)$	
8.	Let $A = \{a, b, c\}$, then the range of the relation $R =$	= {(a, b), (a, c), (b, c)} defined on A is	[1]
	a) {b, c}	b) {c}	
	c) {a, b}	d) {a, b, c}	
9.	If x is a real number and $ x < 5$, then		[1]
	a) - 5 < x < 5	b) -5 \leq x \leq 5	
	c) x ≥ 5	d) x \leq -5	
10.	sin 75° = ?		[1]
	a) $\frac{(\sqrt{2}-1)}{2\sqrt{2}}$	b) $\frac{(\sqrt{3}-1)}{2\sqrt{2}}$	
	C) $\frac{(\sqrt{3}+1)}{2\sqrt{2}}$	d) $\frac{(\sqrt{2}+1)}{2\sqrt{2}}$	
11.	- v -	D} and B = {x : x is a multiple of 5, x is natural no., $x < 30$ }	[1]
	then A - B is		
	a) {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}	b) {3, 6, 9, 12, 18, 21, 24, 27}	
	c) {3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 25, 27, 30}	d) {3, 6, 9, 12, 18, 21, 24, 27, 30}	
12.	The arithmetic mean of two numbers is 34 and the	ir geometric mean is 16. The numbers are	[1]
	a) 56 and 12	b) 64 and 4	
	c) 60 and 8	d) 52 and 16	
13.	$\sum_{r=0}^{n} 4^r . {}^n C_r$ is equal to		[1]
	a) 6 ⁿ	b) 5 ⁻ⁿ	
	c) 4 ⁿ	d) 5 ⁿ	
14.	If a, b, c are real numbers such that a $>$ b, c $<$ 0		[1]
	a) ac > bc	b) ac < bc	
	c) ac \geq bc	d) ac \neq bc	
15.	If A and B are two sets, then $A\cap (A\cup B)$ equals		[1]
	a) B	b) ϕ	
	c) A	d) $A \cap B$	
16.	If sin $x = \frac{-2\sqrt{6}}{5}$ and x lies in quadrant III, then cot	t x ?	[1]
	a) $\frac{3}{2\sqrt{6}}$	b) $\frac{1}{2\sqrt{6}}$	
	c) $\frac{-1}{2\sqrt{6}}$	d) $\frac{-3}{2\sqrt{6}}$	
			[1]
	_		
		e 2 of 14	

Get More Learning Materials Here : 📕

r www.studentbro.in

			r for: i ⁻³⁸ = ?											
	a) i				b) -i									
	c) -1				d) 1									
•	How many diagonals are there in an octagon?													
	a) 24				b) 28									
	c) 20				d) 36									
	Assertion (A): The expa	ansion of (1	$(+ x)^n = n_{c_0} + $	$n_{c_1}x+n_{c_2}x^2$	$\ldots + n_{c_n} x^n$.								
	Assertion (A): The expansion of $(1 + x)^n = n_{c_0} + n_{c_1}x + n_{c_2}x^2 \dots + n_{c_n}x^n$. Reason (R): If x = -1, then the above expansion is zero.													
	a) Both A and R are true and R is the correct b) Both A and R are true but R is not the													
	explana	ation of A.			correct	t explanation of A	A.							
	c) A is tru	ie but R is f	alse.		d) A is fa	lse but R is true.								
	Consider the	following o	data											
	xi	4	8	11	17	20	24	32						
	fi	3	5	9	5	4	3	1						
	<u> </u>				5			-						
	Assertion (A				6 77									
	Reason (R):	The standa	ru deviation	of the data is	0.//.									
	a) Both A	and R are	true and R is	the correct	b) Both A	and R are true l	a) Both A and R are true and R is the correct b) Both A and R are true but R is not the							
	1													
	explana	ation of A.			correct	t explanation of A								
	-	ation of A. 1e but R is f	alse.			t explanation of A	Α.							
	-		alse.			-	Α.							
	c) A is tru	ie but R is f			d) A is fa Section B	-	Α.							
	c) A is tru	ie but R is f			d) A is fa Section B	lse but R is true.	Α.							
	c) A is tru If A = (1, 2, 3 If f(x) = x + -	the but R is f B), B = {4}, $\frac{1}{x}$, show that	, C = {5}, th	en verify that	d) A is fa Section B $A imes (B-C)$	lse but R is true.	Α.							
	c) A is tru If A = (1, 2, 3 If f(x) = x + -	the but R is f B), B = {4}, $\frac{1}{x}$, show that	, C = {5}, th	en verify that	d) A is fa Section B $A imes (B-C)$	lse but R is true.	Α.							
	c) A is tru If A = (1, 2, 3) If f(x) = $x + -$ Evaluate: $\lim_{x \to x} x = -$	the but R is f (3), B = {4}, $\frac{1}{x}$, show that $\frac{1}{2} \frac{8x^3 - 1}{16x^4 - 1}$.	, C = {5}, th at ${f(x)}^3 = 1$	en verify that $f(x^3) + 3f(\frac{1}{x})$	d) A is fa Section B $A imes (B - C)$ OR	lse but R is true.	A. $(A imes C)$.							
	c) A is tru If A = (1, 2, 3) If f(x) = $x + -$ Evaluate: $\lim_{x \to x} x = -$	the but R is f (3), B = {4}, $\frac{1}{x}$, show that $\frac{1}{2} \frac{8x^3 - 1}{16x^4 - 1}$.	, C = {5}, th at ${f(x)}^3 = 1$	en verify that $f(x^3) + 3f(\frac{1}{x})$	d) A is fa Section B $A imes (B - C)$ OR	lse but R is true. $=(A imes B) -$	A. $(A imes C)$.							
	c) A is true If A = (1, 2, 3) If f(x) = $x + -$ Evaluate: $\lim_{x \to \infty} x + F$	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{2} \frac{8x^3 - 1}{16x^4 - 1}$. Ation of hyp	, C = {5}, th at ${f(x)}^3 = f$ perbola havin	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR	lse but R is true. $=(A imes B) -$	A. $(A imes C)$. gth 8.	$-2y^2 = 6.$						
	c) A is true If A = (1, 2, 3) If f(x) = $x + -$ Evaluate: $\lim_{x \to \infty} x + F$	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{2} \frac{8x^3-1}{16x^4-1}$. Attion of hypothesis of majo	, C = {5}, th at ${f(x)}^3 = f$ perbola havin	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR	lse but R is true. $= (A \times B) -$ rectum is of leng	A. $(A imes C)$. gth 8.	$+ 2y^2 = 6.$						
	c) A is true If A = (1, 2, 3) If f(x) = x + - Evaluate: $\lim_{x \to x} x = x$ Find the equation Find the lenge	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{x}$, sh	, C = {5}, th at ${f(x)}^3 = x^2$ perbola havin or and minor	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR	lse but R is true. $= (A \times B) -$ rectum is of leng	A. $(A imes C)$. gth 8.	$+2y^2 = 6.$						
	c) A is true If A = (1, 2, 3) If f(x) = x + - Evaluate: $\lim_{x \to x} x \to$ Find the equa Find the leng For all sets A Is $(A \cap B) \cup$ Justify your s	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{x}$, sh	, C = {5}, th at {f(x)} ³ = $f(x)$ berbola havin or and minor ($B \cup C$) ?	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3 axes, coordina	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR ates of foci, ver	lse but R is true. = $(A \times B)$ – rectum is of leng	A. $(A imes C)$. gth 8. centricity: $3x^2$ +							
•	c) A is true If A = (1, 2, 3) If f(x) = x + - Evaluate: $\lim_{x\to a}$ Find the equa Find the leng For all sets A Is $(A \cap B) \cup$ Justify your so	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{x}$, sh	, C = {5}, th at {f(x)} ³ = $f(x)$ berbola havin or and minor ($B \cup C$) ?	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3 axes, coordina	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR ates of foci, ver	lse but R is true. $= (A \times B) -$ rectum is of leng	A. $(A imes C)$. gth 8. centricity: $3x^2$ +		1					
•	c) A is true If A = (1, 2, 3) If f(x) = x + - Evaluate: $\lim_{x \to x} x \to$ Find the equa Find the leng For all sets A Is $(A \cap B) \cup$ Justify your s	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{x}$, sh	, C = {5}, th at {f(x)} ³ = $f(x)$ berbola havin or and minor ($B \cup C$) ?	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3 axes, coordina ken in order, a	d) A is fa Section B $A \times (B - C)$ OR 5, 0), the latus OR ates of foci, ver re (-1, -6), (2, -	lse but R is true. = $(A \times B)$ – rectum is of leng	A. $(A imes C)$. gth 8. centricity: $3x^2$ +		1					
	c) A is true If A = (1, 2, 3) If f(x) = x + - Evaluate: $\lim_{x\to a}$ Find the equation For all sets A Is $(A \cap B) \cup$ Justify your so Three vertices vertex.	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{x}$, sh	, C = {5}, th at {f(x)} ³ = $\frac{1}{2}$ berbola havin or and minor ($B \cup C$) ? lelogram, ta	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3 axes, coordina ken in order, a	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR ates of foci, ver re (-1, -6), (2, -1) Section C	lse but R is true. $= (A \times B) -$ rectum is of lenger rtices and the economic -5) and (7, 2). W	A. $(A imes C)$. gth 8. centricity: $3x^2$ +	ates of its fourth	1					
	c) A is true If A = (1, 2, 3) If f(x) = x + - Evaluate: $\lim_{x\to a}$ Find the equa Find the leng For all sets A Is $(A \cap B) \cup$ Justify your so Three vertices vertex. Determine the	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{x}$, sh	, C = {5}, th at {f(x)} ³ = $\frac{1}{2}$ perbola havin or and minor ($B \cup C$) ? lelogram, ta nd range of $\frac{1}{2}$	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3 axes, coordina ken in order, a	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR ates of foci, ver re (-1, -6), (2, -1) Section C defined by R =	lse but R is true. $= (A \times B) -$ rectum is of lenger rtices and the economic -5) and (7, 2). We = {(x, x + 5) : x e	A. $(A \times C)$. gth 8. centricity: $3x^2$ + 7rite the coordin E (0, 1, 2, 3, 4, 5)	ates of its fourth	1					
	c) A is true If A = (1, 2, 3) If f(x) = x + - Evaluate: $\lim_{x\to a}$ Find the equa Find the leng For all sets A Is $(A \cap B) \cup$ Justify your so Three vertices vertex. Determine the The longest so	the but R is f B), B = {4}, $\frac{1}{x}$, show that $\frac{1}{x}$, sh	, C = {5}, th at {f(x)} ³ = $\frac{1}{2}$ berbola havin or and minor $(B \cup C)$? lelogram, ta nd range of p angle is 3 tin	en verify that $f(x^3) + 3f(\frac{1}{x})$ ng Foci (± 3 axes, coordina ken in order, a the relation R nes the shortes	d) A is fa Section B $A \times (B - C)$ OR $\overline{5}$, 0), the latus OR ates of foci, ver ates of foci, ver re (-1, -6), (2, -1) Section C defined by R = at side and the f	lse but R is true. $= (A \times B) -$ rectum is of lenger rtices and the economic -5) and (7, 2). W	A. $(A \times C)$. gth 8. centricity: $3x^2$ + $\sqrt[7]{}$ rite the coordin Ξ (0, 1, 2, 3, 4, 5 a shorter than th	ates of its fourth	n					

Page 3 of 14

CLICK HERE

Get More Learning Materials Here :

OR

Find the distance between the following pairs of points:

(i) (2, 3, 5) and (4, 3, 1)

(ii) (-3, 7, 2) and (2, 4, -1)

(iii) (-1, 3, -4) and (1, -3, 4)

(iv) (2, -1, 3) and (-2, 1, 3)

29. Expand the given expression $\left(\frac{2}{x} - \frac{x}{2}\right)^5$

OR

Find a, b and n in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290 and 30375 respectively.

30. If $(x + iy)^{1/3} = a + ib$, where x, y, a, $b \in \mathbb{R}$, then show that $\frac{x}{a} - \frac{y}{b} = -2(a^2 + b^2)$. [3]

Show that a real value of x will satisfy the equation $\frac{1-ix}{1+ix} = a - i$ if $a^2 + b^2 = 1$ where a and b are real

[3]

[3]

[5]

If $u = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24\}$ A = {x : x is prime and x \leq 10} B = {x : x is a factor of 24} Verify the following result

i. A - B = A \cap B' ii. $(A \cup B)' = A' \cap B'$ iii. $(A \cap B)' = A' \cup B'$

31.

Section D

32. Two dice are thrown. The events A, B, C, D, E and F are described as follows:A = Getting an even number on the first die.

B = Getting an odd number on the first die.

C = Getting at most 5 as a sum of the numbers on the two dice.

D = Getting the sum of the numbers on the dice greater than 5 but less than 10.

E = Getting at least 10 as the sum of the numbers on the dice.

F = Getting an odd number on one of the dice.

Describe the following events: A and B, B or C, B and C, A and E, A or F, A and F.

33. Find the derivative of (sinx + cosx) from first principle.

OR

i. If
$$f(x) = \begin{cases} |x|+1, & x < 0 \\ 0, & x = 0 \\ |x|-1, & x > 0 \end{cases}$$
, for what values (s) of a does $\lim_{x \to a} f(x)$ exist?

ii. Find the derivative of the function $\cos\left(x - \frac{\pi}{8}\right)$ from the first principle.

34.	The Sum of two no. is 6 times their geometric mean, show that no. are in the ratio (3 + 3 $\sqrt{2}$) : (3 - 2 $\sqrt{2}$)	[5]
35.	Prove that $\cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15} \cdot \cos \frac{16\pi}{15} = \frac{1}{16}$	[5]

35. Prove that $\cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15} \cdot \cos \frac{16\pi}{15} = \frac{1}{16}$

Prove that: $4 \sin A \sin (60^{\circ} - A) \sin (60^{\circ} + A) = \sin 3A$. Hence deduce that: $\sin 20^{\circ} \times \sin 40^{\circ} \times \sin 60^{\circ} \times \sin 80^{\circ} = \frac{3}{16}$

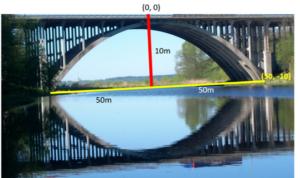
Section E

CLICK HERE

>>

OR

Page 4 of 14


Get More Learning Materials Here : 📕

🕀 www.studentbro.in

[5]

36. Read the following text carefully and answer the questions that follow:

The girder of a railway bridge is a parabola with its vertex at the highest point, 10 m above the ends. Its span is 100 m.

i. Find the coordinates of the focus of the parabola. (1)

ii. Find the equation of girder of bridge and find the length of latus rectum of girder of bridge. (1)

iii. Find the height of the bridge at 20m from the mid-point. (2)

OR

Find the radius of circle with centre at focus of the parabola and passes through the vertex of parabola. (2)

37. Read the following text carefully and answer the questions that follow:

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

Particulars	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	₹ 5253	₹ 5253
Variance of the distribution of wages	100	121

- i. Which firm A or B shows greater variability in individual wages? (1)
- ii. Find the standard deviation of the distribution of wages for frim B. (1)
- iii. Find the coefficient of variation of the distribution of wages for firm A. (2)

OR

Find the amount paid by firm A. (2)

38. A permutation is **an act of arranging the objects or numbers in order**. Combinations are the way of selecting [4] the objects or numbers from a group of objects or collections, in such a way that the order of the objects does not matter.

How many words, with or without meaning can be made from the letters of the word, MONDAY, assuming that no letter is repeated if

Page 5 of 14

🕀 www.studentbro.in

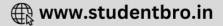
[4]

(i) 4 letters are used at a time

(ii) all letters are used at a time

Page 6 of 14

Get More Learning Materials Here : **_**



Solution

Section A

1. (b) $\frac{1}{2}$ **Explanation:** Given exp. $=\frac{1}{2}$ (2 cos 20° cos 80°) cos 40° $=\frac{1}{2} \left[\cos (80^\circ + 20^\circ) + \cos(80^\circ - 20^\circ) \right] \cos 40^\circ$ $=\frac{1}{2}\left[(\cos 100^{\circ} + \cos 60^{\circ})\cos 40^{\circ}\right] = \frac{1}{2}\left[\left(\cos 100^{\circ} + \frac{1}{2}\right)\cos 40^{\circ}\right]$ $=\frac{\tilde{1}}{4}$ (2 cos 100° cos 40°) + $\frac{1}{4}$ cos 40° $=\frac{1}{4}\cos(100^\circ + 40^\circ) + \cos(100^\circ - 40^\circ)] + \frac{1}{4}\cos 40^\circ$ $=\frac{1}{4}\cos 140^\circ + \cos 60^\circ) + \frac{1}{4}\cos 40^\circ = \frac{1}{4}(\cos 140^\circ + \cos 40^\circ) + (\frac{1}{4} \times \frac{1}{2})$ $= \frac{1}{4} \left[\cos(180^\circ - 40^\circ) + \cos 40^\circ \right] + \frac{1}{8} = \frac{1}{4} \left(-\cos 40^\circ + \cos 40^\circ \right) + \frac{1}{8} = \frac{1}{8}.$ 2. (a) $R \subseteq A imes B$ **Explanation:** Let A and B be two sets. Then a relation R from set A to set B is a subset of A×B. Thus, R is a relation from A to B \Leftrightarrow $R \subseteq A \times B$. 3. (b) $\frac{1}{18}$ Explanation: Total number of squares = 64. Two squares can be selected in ${}^{64}C_2$ ways. In each column, there are 7 pairs of adjacent squares where each pair share 1 side in common. Total such pairs = $8 \times 7 = 56$. In each row, there are 7 pairs of adjacent squares where each pair share 1 side in common. Total such pairs = $8 \times 7 = 56$. Therefore, favourable cases = 56 + 56 = 112. Required probability = $\frac{112}{{}^{64}C_2} = \frac{112}{2016} = \frac{1}{18}$ 4. (d) (**Explanation:** $\lim_{x o 0} x = 0 \,\,$ and $-1 \leq \sin rac{1}{x} \leq 1$, by Sandwitch Theorem, we have $\lim_{x \to 0} x \sin \frac{1}{x} = 0$ 5. **(b)** x + 1 = 0, y + 1 = 0**Explanation:** The lines x + 1 = 0 and y + 1 = 0 are perpendicular to each other. The slope of the line x + y = 0 is -1 Hence the angle made by this line with respect to X-axis is 45° In other words, the angle made by this line with x + 1 = 0 is 45° Clearly the other line with which it can make 45° is y + 1 = 06. (d) {1, 2, 3, 4} **Explanation:** Given A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6} $B\cap C=\{4\}$ $A \cup (B \cap C) = \{1, 2, 3, 4\}$ 7. **(b)** $\left(\frac{5}{169} - \frac{12}{169}i\right)$ **Explanation:** $z = (3 + 2i)^2 = (9 + 4i^2 + 12i) = (9 - 4 + 12i) = (5 + 120)$ $\Rightarrow \mathbf{z}^{-1} = \frac{1}{(5+12i)} \times \frac{(5-12i)}{(5-12i)} = \frac{(5-12i)}{(25-144i^2)} = \frac{(5-12i)}{(25+144)} = \frac{(5-12i)}{(169)}$ $\Rightarrow z^{-1} = \left(\frac{5}{169} - \frac{12}{169}i\right)$ 8. (a) {b, c} Explanation: Since the range is represented by the y- coordinate of the ordered pair (x, y). Therefore, the range of the given relation is { b, c }. 9. (a) - 5 < x < 5 **Explanation:** |x| < 5 $\Rightarrow -5 < x < 5$ 10. (c) $\frac{(\sqrt{3}+1)}{2\sqrt{2}}$ **Explanation:** $\sin 75^\circ = \sin(90^\circ - 15^\circ) = \cos 15^\circ = \frac{(\sqrt{3}+1)}{2\sqrt{2}}$ 11. **(b)** {3, 6, 9, 12, 18, 21, 24, 27} Explanation: Since set B represent multiple of 5 so from Set A common multiple of 3 and 5 are excluded. 12. (b) 64 and 4 Explanation: Let the required numbers be a and b. Then, $\left(rac{a+b}{2}=34\Rightarrow a+b=68
ight)$ and $\sqrt{ab}=16\Rightarrow ab=(16)^2$ = 256 $(a - b)^2 = (a + b)^2 - 4ab = (68)^2 - 4 \times 256 = (4624 - 1024) = 3600$ $\Rightarrow a - b = \sqrt{3600} = 60$ Page 7 of 14

Get More Learning Materials Here : 📕


```
On solving a + b = 68 and a - b = 60, we obtain a = 64, & b= 4. \therefore the required numbers are 64 and 4.
```

13.

(d) 5^{n} Explanation: $\sum_{r=0}^{n} 4^{r} \cdot C_{r} = 4^{0} \cdot C_{0} + 4^{1} \cdot C_{1} + 4^{2} \cdot C_{2} + \dots + 4^{n} \cdot C_{n}$ $= 1 + 4 \cdot C_{1} + 4^{2} \cdot C_{2} + \dots + 4^{n} \cdot C_{n}$ $= (1 + 4)^{n} = 5^{n}$

14.

(b) ac < bc

Explanation: The sign of the inequality is to be reversed (< to > or > to <) if both sides of an inequality are multiplied by the same negative real number.

15.

(c) A Explanation: Let us assume that $x \in A \cap (A \cup B)$ $\Rightarrow x \in A$ and $x \in (A \cup B)$ $\Rightarrow x \in A$ and $(x \in A \text{ or } x \in B)$ $\Rightarrow (x \in A \text{ and } x \in A) \text{ or } (x \in A \text{ and } x \in B)$ $\Rightarrow x \in A \text{ or } x \in A \cap B$ $\Rightarrow x \in A$ Therefore, $A \cap (A \cup B) = A$

16.

Explanation: we know that $\cos^2 x = (1 - \sin^2 x) = \left(1 - \frac{24}{25}\right) = \frac{1}{25} \Rightarrow \cos x = \frac{-1}{5}$ [In quadrant III, $\cos x$ is negative] $\therefore \cot x = \frac{\cos x}{\sin x} = \frac{-1}{5} \times \frac{5}{-2\sqrt{6}} = \frac{1}{2\sqrt{6}}$

17.

(c) -1

(b) $\frac{1}{2\sqrt{6}}$

Explanation: $i^{-38} = \frac{1}{i^{38}} \times \frac{i^2}{i^2} = \frac{-1}{i^{-40}} = \frac{-1}{(i^4)^{10}} = \frac{-1}{i^{10}} = \frac{-1}{1} = -1$

18.

(c) 20 **Explanation:** No. of diagonals in a polygon of n sides = $\frac{1}{2}n(n-3)$, Put n = 8, we get 20.

19.

(b) Both A and R are true but R is not the correct explanation of A.

Explanation: Assertion: $(1 + x)^n = n_{c_0} + n_{c_1}x + n_{c_2}x^2 \ldots + n_{c_n}x^n$ Reason:

 $(1 + (-1))^n = n_{c_0} 1^n + n_{c_1} (1)^{n-1} (-1)^1 + n_{c_2} (1)^{n-2} (-1)^2 + \dots + {^nc_n} (1)^{n-n} (-1)^n$

 $= n_{c_8} - n_{c_1} + n_{c_2} - n_{c_3} + ... (-1)^n n_{c_n}$

Each term will cancel each other

 $\therefore (1 + (-1))^n = 0$ Reason is also the but not the correct explanation of Assertion.

20.

(b) Both A and R are true but R is not the correct explanation of A. **Explanation:** Assertion: Presenting the data in tabular form, we get

xi	f _i	f _i x _i	$\mathbf{x_i} - \bar{x}$	$(\mathbf{x_i} - \bar{x})^2$	$f_i(x_i - \bar{x})^2$
4	3	12	-10	100	300
8	5	40	-6	36	180
11	9	99	-3	9	81
17	5	85	3	9	45
20	4	80	6	36	144
24	3	72	10	100	300
32	1	32	18	324	324
	30	420			1374

N = 30,
$$\sum_{i=1}^{7} f_i x_i = 420$$
, $\sum_{i=1}^{7} f_i (x_i - \bar{x})^2 = 1374$
Therefore, $\bar{x} = \frac{\sum_{i=1}^{7} f_i x_i}{N} = \frac{1}{30} \times 420 = 14$
 \therefore Variance $(\sigma^2) = \frac{1}{N} \sum_{i=1}^{7} f_i (x_i - \bar{x})^2$
 $\frac{1}{30} \times 1374 = 458$
Reason: Standard deviation $(\sigma) = \sqrt{45.8} = 6.77$

Section B

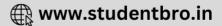
21. As given in the question we have, A = {1, 2, 3}, B = {4} and C = {5} From set theory, (B - C) = {4} $\therefore A \times (B - C) = \{1, 2, 3\} \times \{4\} = \{(1, 4), (2, 4), (3, 4)\}......(i)$

Page 8 of 14

Now. $A \times B = \{1, 2, 3\} \times \{4\} = \{(1, 4), (2, 4), (3, 4)\}$ and, $A \times C = \{1, 2, 3\} \times \{5\}$ = {(1,5), (2, 5), (3, 5)} : $(A \times B) - (A \times C) = \{(1, 4), (2, 4), (3, 4)\}$(ii) From equation (i) and equation (ii), we get $A \times (B - C) = (A \times B) - (A \times C)$ We can see the equations (i) and (ii) have same ordered pairs. Hence verified. OR We have, $f(x) = x + \frac{1}{x}$ (i) To prove: ${f(x)}^3 = f(x^3) + 3f(\frac{1}{x})$ Proof: On cubing both sides of (i), we get $\{\mathbf{f}(\mathbf{x})\}^3 = \mathbf{x}^3 + \frac{1}{x^3} + 3 \times x \times \frac{1}{x} \times \left(x + \frac{1}{x}\right)$ $=\left(x^3+rac{1}{x^3}
ight)+3\left(rac{1}{x}+x
ight)$ $\begin{vmatrix} x & y \\ = f(x^3) + 3f(\frac{1}{x}) \\ | \because f(\frac{1}{x}) = \left\{ \frac{1}{x} + \frac{1}{\frac{1}{x}} \right\} = \left(\frac{1}{x} + x \right) \end{vmatrix}$ Hence, ${f(x)}^3 = f(x^3) + 3f(\frac{1}{x})$ 22. We have to find the value of $\lim_{x \to \frac{1}{2}} \frac{\frac{8x^3 - 1}{16x^4 - 1}}{16x^4 - 1}$ When $x = \frac{1}{2}$, the expression $\frac{8x^3-1}{16x^4-1}$ assumes the for $n \frac{0}{0}$. Therefore, $\left(x - \frac{1}{2}\right)$ or, 2x - 1 is a factor common to numerator and denominator. Factorizing the numerator and denominator, we obtain; $\lim_{x \to \frac{1}{2}} \frac{\frac{8x^3 - 1}{16x^4 - 1}}{\frac{1}{6}} \left(\frac{0}{0} \text{ form}\right)$ $= \lim_{x \to \frac{1}{2}} \frac{(2x)^3 - 1^3}{(4x^2)^2 - 1^2}$ $= \lim_{x \to \frac{1}{2}} \frac{(2x-1)(4x^2+2x+1)}{(4x^2+1)(4x^2-1)} \left(\frac{0}{0} \text{ form}\right)$ $= \lim_{x \to \frac{1}{2}} \frac{(2x-1)(4x^2+2x+1)}{(4x^2+1)(2x-1)(2x+1)}$ $=\lim_{x\to\frac{1}{2}}\frac{4x^2+2x+1}{(4x^2+1)(2x+1)}=\frac{3}{4}$ 23. Here foci are ($\pm 3\sqrt{5}$, 0) which lie on x-axis. So the equation of hyperbola in standard form is $\frac{x^2}{x^2} - \frac{y^2}{y^2} = 1$ \therefore foci (±c, 0) is (±3 $\sqrt{5}$, 0) \Rightarrow c = $3\sqrt{5}$ Length of latus rectum $\frac{2b^2}{a} = 8 \Rightarrow b^2 = 4a$ We know that $c^2 = a^2 + b^2$ $\therefore (3\sqrt{5})^2 = a^2 + 4a$ $\Rightarrow a^2 + 4a - 45 = 0$ \Rightarrow (a + 9) (a - 5) = 0 \Rightarrow a = 5 (:: a = -9 is not possible) Also a = 5 $\Rightarrow b^2 = 4 \times 5 = 20$ Thus required equation of hyperbola is $\frac{x^2}{25} - \frac{y^2}{20} = 1$ OR We have. $3x^2 + 2y^2 = 6$ $\Rightarrow \frac{x^2}{2} + \frac{y^2}{3} = 1$ This equation is of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a^2 = 2$ and $b^2 = 3$ i.e. $a = \sqrt{2}$ and $b = \sqrt{3}$. Clearly, a < b, so the major and minor axes of the given ellipse are along y and x-axes respectively. : Length of the major axis = $2b = 2\sqrt{3}$ and Length of the minor axis = $2b = 2\sqrt{2}$ The coordinates of the vertices = (0, b) and (0, -b) = (0, $\sqrt{3}$) and (0, - $\sqrt{3}$) The eccentricity e of the ellipse is $e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{2}{3}} = \frac{1}{\sqrt{3}}$ The coordinates of the foci = (0, be) and (0, -be) = (0, 1) and (0, -1). 24. Let us consider the following sets A, B and C such that A = $\{1, 2, 3\}$ $B = \{2, 3, 5\}$ $C = \{4, 5, 6\}$ Now $(A \cap B) \cup C = (\{1, 2, 3\} \cap \{2, 3, 5\}) \cup \{4, 5, 6\}$ $= \{2, 3\} \cup \{4, 5, 6\}$ = {2, 3, 4, 5, 6} And $A \cap (B \cup C) = \{1, 2, 3\} \cap [\{2, 3, 5\} \cup \{4, 5, 6\}]$ $= \{1, 2, 3\} \cap \{2, 3, 4, 5, 6\}$

Page 9 of 14

 $= \{2, 3\}$ Thus, $(A \cap B) \cup C \neq A \cap (B \cup C)$ 25. Let A(-1, -6), B(2, -5) and C(7, 2) be the vertices of the parallelogram ABCD and D be the fourth vertex of the parallelogram. Let the coordinates of D be (x, y). Since, diagonals of a parallelogram bisect each other. $\frac{-1+7}{2} = \frac{2+x}{2}$ and $\frac{-6+2}{2} = \frac{-5-7}{2}$ +y \Rightarrow x = 4 and y = 1 Therefore, the coordinates of the fourth vertex D are (4, 1). Section C 26. Here R = { $(x, x + 5) : x \in (0, 1, 2, 3, 4, 5)$ } $= \{(a, b): a = 0, 1, 2, 3, 4, 5\}$ Now a = x and b = x + 5Putting a = 0, 1, 2, 3, 4, 5 we get b = 5, 6, 7, 8, 9, 10 : Domain of $R = \{0, 1, 2, 3, 4, 5\}$ Range of R = {5, 6, 7, 8, 9, 10} 27. Let the length of the shortest side be x cm. Then length of longest side = 3x cm length of third side = (3x - 2)cm Perimeter of triangle = x + 3x + 3x - 2= (7x - 2)cmNow $7x - 2 \ge 61$ $\Rightarrow 7x \ge 61 + 2 \Rightarrow 7x \ge 63 \Rightarrow x \ge 9$ Thus the minimum length of shortest side = 9 cm 28. Let A(-2, 3, 5), B (1, 2, 3) and C(7, 0, -1) be three given points. Then $AB = \sqrt{(1+2)^2 + (2-3)^2 + (3-5)^2} = \sqrt{9+1+4} = \sqrt{14}$ $BC = \sqrt{(7-1)^2 + (0-2)^2 + (-1-3)^2} = \sqrt{36 + 4 + 16} = \sqrt{56} = 2\sqrt{14}$ $AC = \sqrt{(7+2)^2 + (0-3)^2} + (-1-5)^2 = \sqrt{81+9+36} = \sqrt{126} = 3\sqrt{14}$ Now AC = AB + BCTherefore, A, B, C are collinear. Let A(2, 3, 5) and B(4, 3, 1) be two points. Then $AB = \sqrt{(4-2)^2 + (3-3)^2 + (1-5)^2} = \sqrt{4+0+16} = \sqrt{20} = 2\sqrt{5}$ units (ii) Let A(-3, 7, 2) and B(2, 4, -1) be two points. Then $AB = \sqrt{\left[2 - (-3)
ight]^2 + \left(4 - 7
ight)^2 + (-1 - 2)^2}$ $=\sqrt{(2+3)^2+(4-7)^2+(-1-2)^2}=\sqrt{25+9+9}=\sqrt{43}$ units (iii) Let A(-1, 3, -4) and B(1, -3, 4) be two points. Then $AB = \sqrt{\left[1 - (-1)
ight]^2 + (-3 - 3)^2 + \left[4 - (-4)
ight]^2}$ $=\sqrt{4+36+64}=\sqrt{104}=2\sqrt{26}$ (iv) Let A(2, -1, 3) and B(-2, 1, 3) be two points. Then $AB = \sqrt{(-2-2)^2 + [1-(-1)]^2 + (3-3)^2}$ $=\sqrt{(-2-2)^2+(1+1)^2+(3-3)^2}$ $=\sqrt{16+4+0}=\sqrt{20}=2\sqrt{5}$ units 29. Using binomial theorem for the expansion of $\left(\frac{2}{x} - \frac{x}{2}\right)^5$ we have $\left(\frac{2}{x} - \frac{x}{2}\right)^5 = {}^5C_0\left(\frac{2}{x}\right)^5 + {}^5C_1\left(\frac{2}{x}\right)^4 \left(\frac{-x}{2}\right) + {}^5C_2\left(\frac{2}{x}\right)^3 \left(\frac{-x}{2}\right)^2 + {}^5C_3\left(\frac{2}{x}\right)^2 \left(\frac{-x}{2}\right)^3$ $+{}^{5}C_{4}\left(\frac{2}{x}\right)\left(\frac{-x}{2}\right)^{4}+{}^{5}C_{5}\left(\frac{-x}{2}\right)^{6}$ $=\frac{32}{x^5}+5\cdot\frac{16}{x^4}\cdot\frac{-x}{2}+10\cdot\frac{8}{x^3}\cdot\frac{x^2}{4}+10\cdot\frac{4}{x^2}\cdot\frac{-x^3}{8}+5\cdot\frac{2}{x}\cdot\frac{x^4}{16}+\frac{-x^5}{32}$ $=rac{32}{x^5}-rac{40}{x^3}+rac{20}{x}-5x+rac{5}{8}x^3-rac{x^5}{32}$ We have $T_1 = {}^n C_0 a^n b^0 = 729 \dots$ (i) $T_2 = {}^n C_1 a^{n-1} b = 7290 \dots$ (ii) $T_3 = {}^n C_2 a^{n-2} b^2 = 30375 \dots$ (iii) From (i) $a^n = 729...$ (iv) From (ii) $na^{n-1} b = 7290 \dots (v)$ From (iii) $\frac{n(n-1)}{2}a^{n-2}b^2 = 30375...$ (vi) Multiplying (iv) and (vi), we get $\frac{n(n-1)}{2}a^{2n-2}b^2 = 729 imes 30375 \dots$ (vii) Squaring both sides of (v) we get $n^2 a^{2n-2} b^2 = (7290)(7290)(viii)$ Dividing (vii) by (viii), we get $\frac{n(n-1)a^{2n}-2b^2}{2n^2a^{2n}-2b^2} = \frac{729\times30375}{7290\times7290}$ $\Rightarrow \frac{(n-1)}{2n} = \frac{30375}{7290} \Rightarrow \frac{n-1}{2n} = \frac{5}{12} \Rightarrow 12n - 12 = 10n$ $\Rightarrow 2n = 12 \Rightarrow n = 6$ From (iv) $a^6=729 \Rightarrow a^6=(3)^6 \Rightarrow a=3$ From (v) $6 \times 3^5 \times b = 7290 \Rightarrow b = 5$ Thus a = 3, b = 5 and n = 6. 30. We have, $(x + iy)^{1/3} = a + ib$ \Rightarrow x + iy = (a + ib)³ [cubing on both sides]


Page 10 of 14

OR

OR

 \Rightarrow x + iy = a³ + i³ b³ + 3 iab (a + ib) \Rightarrow x + iy = a³ - ib³ + i 3a² b - 3ab² \Rightarrow x + iy = a³ - 3ab² + i (3a² b - b³) On equating real and imaginary parts from both sides, we get $x = a^{3} - 3ab^{2}$ and $y = 3a^{2}b - b^{3}$ $\Rightarrow \frac{x}{a} = a^2 - 3b^2$ and $\frac{y}{b} = 3a^2 - b^2$ Now, $\frac{x}{a} - \frac{y}{b} = a^2 - 3b^2 - 3a^2 + b^2$ $= -2a^2 - 2b^2 = -2(a^2 + b^2)$ Hence proved. OR Here $rac{1-ix}{1+ix}=a-ib$ By componendo and dividendo, we have $\frac{1-ix+1+ix}{1-ix-1-ix} = \frac{a-ib+1}{a-ib-1}$ a-ib-11-a-ib $\frac{1-a}{\frac{1-a}{n}} = \frac{1-a}{-(1-a+ib)}$ -2ix $\begin{array}{l} \stackrel{-xix}{\rightarrow} \quad -(1-a+ib) \\ \Rightarrow \frac{1}{ix} = \frac{1+a-ib}{1-a+ib} \\ \Rightarrow ix = \frac{1-a+ib}{1+a-ib} \times \frac{1+a+ib}{1+a+ib} \\ \Rightarrow ix = \frac{1-a^2-b^2+2ib}{(1-x)-2x1} \end{array}$ $(1\!+\!a)^1\!-\!i^2b^1$ \Rightarrow $ix=rac{1-a^2-b^2+2ib}{1-a^2-b^2+2ib}$ $(1+a)^2+b^2$ $1-a^2-b^2$ $\frac{1-a^2-b^2}{(1+a)^2+b^2} + \frac{2b}{(1+a)^2+b^2}i$ If $a^2 + b^2 = 1$ then $x = \frac{2b}{(1+a)^2+b^2}$ which is real. 31. Given, U = {1,2,3,4,5,6,7,8,9,10,12,24} A = {2,3,5,7} B = {1,2,3,4,5,6,8,12,24} Now, A' = $\{1,4,6,8,9,10,12,24\}$ B' = $\{5,7,9,10\}$ A U B = $\{1,2,3,4,5,6,7,8,12,24\}$ $(A \cup B)' = \{9, 10\}$ $A \cap B = \{2,3\} (A \cup B)' = \{1,4,5,6,7,8,9,10,12,24\}$ (i) $A - B = A \cap B'$ $L.H.S = A - B = \{2,3,5,7\} - \{1,2,3,4,6,8,12,24\} = \{5,7\} R.H.S = A \cap B' = \{2,3,5,7\} \cap \{5,7,9,10\} = \{5,7\}$ \therefore L.H.S = R.H.S. (ii) (A U B)' = $A \cap B'$ L.H.S = (A \cup B)' = {9,10} $R.H.S = A' \cap B' = \{1,4,6,8,9,10,12,24\} \cap \{5,7,9,10\}$ $= \{9, 10\}$ \therefore L.H.S = R.H.S, (iii) $(A \cap B)' = A' \cap B'$ L.H.S = $(A \cap B)' = \{1,4,5,6,7,8,9,10,12,24\}$ $\text{R.H.S} = \text{A'} \cap \text{B'} = \{1,4,6,8,9,10,12,24\} \cap \{5,7,9,10\}$ = {1,4,5,6,7,8,9,10,12,34} \therefore L.H.S = R.H.S Section D 32. A = Getting an even number on the first die. $A = \{(2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$ B = Getting an odd number on the first die. $B = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)\}$ C = Getting at most 5 as sum of the numbers on the two dice. $C = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1) \}$ D = Getting the sum of the numbers on the dice >5 but <10. $\mathsf{D} = \{(1,5), (1,6), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,4), (6,1), (6,2), (6,2), (6,3) \}$ E = Getting at least 10 as the sum of the numbers on the dice. $E = \{(4,6), (5,5), (5,6), (6,4), (6,5), (6,6)\}$ F = Getting an odd number on one of the dice. $F = \{$ $(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4)(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5) \\ +(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4)(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5) \\ +(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4)(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5) \\ +(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,1),(1,2$ A and B are mutually exclusive events, thus A \cap B = \varnothing $B \cup C = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(2,1),(2,2),(2,3),(4,1)\}$ $B \cap C = \{(1,1),(1,2),(1,3),(1,4),(3,1),(3,2)\}$ $A \cap E = \{(4,6), (6,4), (6,5), (6,6)\}$ $A \cup F = \{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4),(4,5),(6,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(3,6),(5,1),(5,2),(3,6),(5,1),(5,2),(5,1),($ (5,3),(5,4),(5,5),(5,6) $A \cap F{=}\{(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5)\}$ 33. We have, f(x) = sinx + cosxBy using first principle of derivative $f'(x) = \lim_{h \to 0} \frac{\overline{f(x+h) - f(x)}}{h}$ $\frac{\sin(x+h)+\cos(x+h)-\sin x}{2}$ $f(x) = \lim_{x \to \infty} f(x)$ h $= \lim_{h \to 0} \frac{\left[\sin x \cdot \cos h + \cos x \cdot \sin h + \cos x \cdot \cos h - \sin x \cdot \sin h - \sin x - \cos x\right]}{h} \left[\because \sin (x + y) = \sin x \cos y + \cos x \sin y \text{ and } \cos (x + y) = \cos x \cos y - \sin x \sin y \right]$ $=\lim_{h\to 0}\frac{\left[(\cos x \cdot \sin h - \sin x \cdot \sin h) + (\sin x \cdot \cos h - \sin x) + (\cos x \cdot \cos h - \cos x)\right]}{(\cos x \cdot \sin h) + (\cos x \cdot \cos h - \sin x) + (\cos x \cdot \cos h - \cos x)}$ Page 11 of 14

Get More Learning Materials Here : **_**

 $=\lim_{h\to 0}\frac{\sin h(\cos x - \sin x) + \sin x(\cos h - 1) + \cos x(\cos h - 1)}{h}$ $=\lim_{h\to 0} \frac{\sin h}{h} (\cos x - \sin x) + \lim_{h\to 0} \frac{\sin x (\cos h - 1)}{h} + \lim_{h\to 0} \frac{\cos x (\cos h - 1)}{h}$ $= 1 \cdot (\cos x - \sin x) + \limsup_{h \to 0} \sin x \left[\frac{-(1 - \cos h)}{h} \right] + \limsup_{h \to 0} \cos x \left[\frac{-(1 - \cos h)}{h} \right] \left[\because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$ $=(\cos x-\sin x)-\sin x\cdot \lim_{h
ightarrow 0} \left(rac{1-\cos h}{h}
ight)-\cos x\cdot \lim_{h
ightarrow 0} \left(rac{1-\cos h}{h}
ight)$ $=(\cos x-\sin x)-\sin x\cdot \lim_{h\to 0}\frac{2\sin^2\frac{h}{2}}{h\times \frac{h}{4}}\times \frac{h}{4}-\cos x\cdot \lim_{h\to 0}\frac{2\sin^2\frac{h}{2}}{h\times \frac{h}{4}}\times \frac{h}{4}$ $=(\cos x-\sin x)-\sin x\cdot 2\cdot \frac{1}{4}\lim_{\frac{h}{2}\to 0}\left(\frac{\sin\frac{h}{2}}{\frac{h}{2}}\right)^2\times h-\cos x\cdot 2\cdot \frac{1}{4}\lim_{\frac{h}{2}\to 0}\left(\frac{\sin\frac{h}{2}}{\frac{h}{2}}\right)^2h$ $= (\cos x - \sin x) - \frac{1}{2} \cdot \sin x \cdot (1) \times 0 - \cos x \cdot \frac{1}{2} \cdot (1) \times 0 \left[\because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$ = (cos x - sin x) - 0 - 0 $= \cos x - \sin x$ OR ${
m i.}\;f(x)=\left\{egin{array}{ccc} |x|+1, & x<0\ 0, & x=0\ |x|-1, & x>0 \end{array}
ight.$ At x = 0, $ext{RHL} = \lim_{x o 0^+} f(x) = \lim_{h o 0} f(0+h)$ $= \lim_{h
ightarrow 0} |0+h| - 1$ = - 1 $ext{LHL} = \lim_{h o 0^-} f(x) = \lim_{h o 0} f|0-h|$ $= \lim_{h
ightarrow 0} |0-h| + 1$ $=\lim_{h
ightarrow 0}-(0-h)+1$ $=\lim_{h\to 0}h+1$ = 0 + 1 = 1 $\Rightarrow RHL \neq LHL$ \Rightarrow At x = 0, limi does not exist. Hence, $\lim_{x \to a} f(x)$ exists for all $a \neq 0$. ii. Let $f(x) = \cos\left(x - \frac{\pi}{8}\right)$ By using first principle of derivative We have, $f'(x) = \lim_{h \to 0} rac{f(x+h) - f(x)}{h}$ $\Rightarrow f'(x) = \lim_{h \to 0} \frac{\cos\left(x + h - \frac{\pi}{8}\right) - \cos\left(x - \frac{\pi}{8}\right)}{b} \left[\because f(x) = \cos\left(x - \frac{\pi}{8}\right) \right]$ $= \lim_{h \to 0} \frac{-2\sin\left(\frac{x + h - \frac{\pi}{8} + x - \frac{\pi}{8}}{2}\right) \sin\left(\frac{x + h - \frac{\pi}{8} - x + \frac{\pi}{8}}{2}\right)}{h}$ $\left[\because \cos C - \cos D = -2 \sin \left(rac{C+D}{2}
ight) \sin \left(rac{C-D}{2}
ight)
ight]$ $=\lim_{h\to 0}\frac{\frac{-2\sin\frac{2x-2\left(\frac{\pi}{8}\right)+h}{2}}{2\times\frac{h}{2}}}{2\times\frac{h}{2}}$ $=-\sinrac{2x-2ig(rac{\pi}{8}ig)+0}{2} imes 1\left[\therefore \lim_{x o 0}rac{\sinrac{h}{2}}{rac{h}{2}}=1
ight]$ $=-\sinrac{2\left(x-rac{\pi}{8}
ight)}{2}$ $\Rightarrow f'(x)=-\sin\left(x-rac{\pi}{8}
ight)$ 34. a + b = 6 $\sqrt{a}b$ $\frac{a+b}{2\sqrt{ab}} = \frac{3}{1}$ by C and D by C and D $\frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{3+1}{3-1}$ $\frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2} = \frac{2}{1}$ $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \frac{\sqrt{2}}{1}$ $\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \frac{1}{1}$ again by C and D $\frac{\sqrt{a}+\sqrt{b}+\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}-\sqrt{a}-\sqrt{b}} = \frac{\sqrt{2}+1}{\sqrt{2}-1}$ $\frac{2\sqrt{a}}{2\sqrt{b}} = \frac{\sqrt{2}+1}{\sqrt{2}-1}$ $\frac{a}{b} = \frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)^2} \text{ (on squaring both sides)}$ $\frac{a}{b} = \frac{2+1+2\sqrt{2}}{2+1-2\sqrt{2}}$ $\frac{a}{b} = \frac{3+2\sqrt{2}}{3-2\sqrt{2}}$ $a: b = (3+2\sqrt{2}): (3-2\sqrt{2})$ a : b = $(3 + 2\sqrt{2})$: $(3 - 2\sqrt{2})$ 35. **LHS** = $\cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15} \cdot \cos \frac{16\pi}{15}$ $= \cos \frac{2\pi}{15} \cos 2 \left(\frac{2\pi}{15}\right) \cos 4 \left(\frac{2\pi}{15}\right) \cos 8 \left(\frac{2\pi}{15}\right)$ Put $\frac{2\pi}{15} = \alpha$ \Rightarrow LHS = $\cos \alpha \cdot \cos 2\alpha \cdot \cos 4\alpha \cdot \cos 8\alpha$ $=\frac{2\sin\alpha[\cos\alpha\cos2\alpha\cos4\alpha\cos8\alpha]}{2\sin\alpha}$ [multiplying numerator and denominator by $2\sin\alpha$]

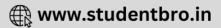
Page 12 of 14

Get More Learning Materials Here :

 $= \frac{(2 \sin \alpha \cdot \cos \alpha) \cdot \cos 2\alpha \cdot \cos 4\alpha \cdot \cos 8\alpha}{(2 \sin \alpha \cdot \cos \alpha) \cdot \cos 2\alpha \cdot \cos 4\alpha \cdot \cos 8\alpha}$ $\frac{2\sin\alpha}{2(\sin 2\alpha \cos 2\alpha \cos 4\alpha \cos 8\alpha)} [\because 2\sin\alpha \cos\alpha = \sin 2\alpha \text{ and multiplying numerator and denominator by 2}]$ $(2\sin 2\alpha \cdot \cos 2\alpha) \cdot \cos 4\alpha \cdot \cos 8\alpha$ $\frac{4\sin\alpha}{2(\sin 4\alpha \cos 4\alpha)\cos 8\alpha}$ [:: $2\sin\alpha \cos \alpha = \sin 2\alpha$ and multiplying numerator and denominator by 2] $2(\sin 8\alpha \cdot \cos 8\alpha)$ $2(8\sin\alpha)$ $\frac{\sin 16\alpha}{16\sin\alpha} = \frac{\sin(15\alpha + \alpha)}{16\sin\alpha}$ Now, $15\alpha = 2\pi$, $=\frac{\sin(2\pi+\alpha)}{16\sin\alpha}=\frac{\sin\alpha}{16\sin\alpha}=\frac{1}{16}=\mathrm{RHS}$: LHS = RHS Hence proved. $LHS = 4 sinA imes sin(60^o - A) imes sin(60^o + A)$ $=2sinA[2sin(60^{o}-A)sin(60^{o}+A)]$ = 2 sin A [cos { $(60^{\circ} - A) - (60^{\circ} + A)$ } - cos { $(60^{\circ} - A) + (60^{\circ} + A)$ }] $[:: 2 \sin A \times \sin B = \cos (A - B) - \cos (A + B)]$ $= 2sinA[cos(-2A) - cos120^o]$ $= 2sinA[cos2A - cos120^{o}] [:: cos(-\theta) = cos \theta]$ $=2sinA imes cos2A-2sinA imes cos120^{o}$ $= [\sin (A + 2A) + \sin (A - 2A)] - 2 \sin A(-\frac{1}{2})$ $[:: 2sinA \times cosB = sin(A + B) + sin(A - B) \text{ and } cos 120^{\circ} = -\frac{1}{2}]$ = sin3A + sin(-A) + sinA $= sin3A - sinA + sinA = sin3A = RHS [:: sin (- \theta) = - sin \theta]$: LHS = RHS Hence proved. Now, $4 \sin A \sin (60^{\circ} - A) \times \sin (60^{\circ} + A) = \sin 3A$ On putting $A = 20^{\circ}$, we get $4 \sin 20^{\circ} \times \sin (60^{\circ} - 20^{\circ}) \sin (60^{\circ} + 20^{\circ}) = \sin 3 \times (20^{\circ})$ $\Rightarrow 4 \sin 20^{\circ} \times \sin 40^{\circ} \times \sin 80^{\circ} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$ $\Rightarrow sin20^{o} imes sin40^{o} imes sin80^{o} = rac{\sqrt{3}}{8}$ $\Rightarrow \sin 20^{\circ} \times \sin 40^{\circ} \times \frac{\sqrt{3}}{2} \times \sin 80^{\circ} = \frac{\sqrt{3}}{8} \times \frac{\sqrt{3}}{2}$ [multiplying both sides by $\frac{\sqrt{3}}{2}$] $\therefore sin20^{o} \times sin40^{o} \times sin60^{o} \times sin80^{o} = \frac{3}{16} \left[\because \frac{\sqrt{3}}{2} = \sin 60^{o} \right]$ 36. i. From the diagram equation of parabola is $x^2 = -4ay$ Vertex is 10m hight and spam is 100m parabola passes through (50, -10) Hence, $50^2 = -4a(-10)$ $\Rightarrow 2500 = 40a$ \Rightarrow a = $\frac{2500}{40} = 62.5$ Hence coordinates of focus = (-a, 0) = (-62.5, 0)ii. Equation of parabola is x^2 = -4ay and $a = \frac{2500}{40} = 62.5$ Equation is $x^2 = -4\left(\frac{2500}{40}\right)y$ $\Rightarrow x^2 = -250y$ Length of latus rectum is $4a = 4 \times 62.5 = 250m$ iii. Equation parabola $x^2 = -250y$ Coordinates of the point at 20 m from mid point = (20, y) Substituting in the equation of parabola $\Rightarrow 400 = -250y$ \Rightarrow y = $\frac{-400}{250}$ = -1.6 height of the bridge = 10 - 1.6 = 8.4m OR vertex of parabola is (0, 0) and focus is (0, -62.5) \Rightarrow (0, -62.5) is center and (0, 0) is on the circle \Rightarrow r = 0 - (-62.5) = 62.5 m 37. i. coefficient of variation of wages, of firm A = 0.19 coefficient of variation of wages, of firm B = $\frac{121}{5253} \times 100 = 0.21$... Firm B shows greater variability in individual wages. ii. Standard deviation, $\sigma = \sqrt{\sigma^2} = \sqrt{121} = 11$ iii. Variance of distribution of wages, σ^2 = 100 Standard deviation, $\sigma = \sqrt{\sigma^2} = \sqrt{100} = 10$ coefficient of Variation = $\frac{\sigma}{\pi} \times 100$ $=\frac{10}{5.253} \times 100$ = 0.19OR No. of wage earners = 586 Mean of monthly wages, $\bar{x} = ₹5253$ Amount paid by firm A = ₹(586 × 5253) = ₹3078258

Page 13 of 14

OR


Section E

38. Total number of letters in word MONDAY = 6 Number of vowels in word MONDAY = 2 (i) Number of letters used = 4 ∴ Number of permutations =⁶P₄ = $\frac{6!}{(6-4)!}$ = $\frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2!}{2!} = 360$ (ii) Number of letters used = 6 ∴ Number of permutations =⁶P₆ = $\frac{6!}{6!} = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

Page 14 of 14

Get More Learning Materials Here :

